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Abstract

We have developed an intermolecular potential that describes the structure of the ¢-form of
the hexahydro-1,3,5-trinitro,1,3,5-s-triazine (RDX) crystal. The potential is composed of
pairwise atom-atom (6-exp) Buckingham interactions and charge-charge interactions. The
parameters of the Buckingham repulsion-dispersion terms have been determined through a
combination of nonlinear least-squares fitting to observed crystal structures and lattice energies
and trial-and-error adjustment. Crystal-packing calculations were performed to determine the
equilibrium crystallographic structure and lattice energy of the model. There are no significant
differences in the geometrical structures and crystal energies resulting from minimization of the
lattice energy with and without symmetry constraints. Further testing of the intermolecular
potential has been done by performing symmetry-constrained isothermal-isobaric Monte Carlo
simulations. The properties of the crystal (lattice dimensions, molecular orientation, and lattice
energy) determined from Monte Carlo simulations at temperatures over the range 4.2-300 K
indicate good agreement with experimental data. The intermolecular potential was also subjected
to isothermal-isobaric molecular dynamics calculations at ambient pressure for temperatures
ranging from 4.2 to 325 K. Crystal structures at 300 K are in outstanding agreement with
experiment (within 2% of lattice dimensions, and almost no rotational and translational disorder
of the molecules in the unit cell). The space-group symmetry was maintained throughout the
simulations. Thermal expansion coefficients were determined for the model, and are in reasonable
accord with experiment.




ACKNOWLEDGMENTS

This work was supported by the Strategic Environmental Research and Development
Program (SERDP), Project PP-695. The work at Oklahoma State University (OSU) was also
supported by the U.S. Army Research Office (Grant No. DAAH 04-93-G-0450). Mr. Sorescu
wishes to thank Professor John Yates at the University of Pittsburgh for his hospitality during the
course of this work. All the authors wish to thank Dr. Cary F. Chabalowski for helpful

discussions.

iil




INTENTIONALLY LEFT BLANK.

iv




3.1
3.2
3.3

4.1
4.2
4.3

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ... .itiitiiiitiiiiiiiernarrnannosencnseones iii
LISTOFFIGURES ... itiittiitiinitiiiieennneessnnnenoenesescansnns vii
LISTOF TABLES .. iiiiittteetttaitttneeennasensnsnenoaseassennsens vii
INTRODUCTION . .itttietieneteeeetunseanereonnneensosanecsansens 1
INTERMOLECULARPOTENTIAL .......iiiiiiiiiiiiiieietinecnnnns 4
DETAILS OF THE CALCULATIONS .. ..ottt ciaee 14
Molecular Packing ........coiiiiminiiiiieiinneenantnennneennns 15
Symmetry-Constrained NPT Monte Carlo Calculations .................. 18
NPT Molecular Dynamics Calculations .............occeniiiiinnnnn.. 21
RESULTS AND DISCUSSIONS ...ttt iiiiiiiiieentennarens 22
Molecular Packing Calculations ...........cooiiiiiianiineniinnennn, 22
Symmetry-Constrained NPT Monte Carlo Calculations .................. 23
NPT Molecular Dynamics Calculations ............ccevieeecennnnennnn 25
SUMMARY AND CONCLUSIONS .. .iiiiiiiiiiiiiieiiaeraeecannns 33
REFERENCES .. .iititttiiittiiiienisernasecsonaassossonsconnnsns 37
APPENDIX: FORMULATION OF THE STRESSTENSOR ................ 41
DISTRIBUTION LIST . ..ottt ititiieiiiieeetnneeeaneasneascnscennnnns 47
REPORT DOCUMENTATIONPAGE . .....cciiiiiiiiiiiii it e 49




INTENTIONALLY LEFT BLANK.

vi




Table

LIST OF FIGURES

Unit cell of a-RDX crystal using refined coordinates given in Choi and Prince [2] 13
Molecular configuration of an RDX molecule ..............cciiiiiinnnn.. 14

Time histories of lattice parameters (1,, 1,, 15, &, B, ) for isothermal-isobaric
trajectory corresponding to T=300 K, 0atm ...........c.cooviinneinnneennn. 29

Time histories of unit cell volume, pressure, rotational temperature (T[Rot]), and
center-of-mass translational temperature (T[trans]) for isothermal-isobaric

trajectory corresponding to T=300 K, 0atm ...........ccoovinieinnneennn. 30
Comparison of time-averaged center-of-mass fractional positions and Euler angles
(X-Convention) with experiment at T=300 K, Oatm ..............o..0venn 31
Lattice parameters (1,, 1,, 15,) and unit cell volume as a function of temperature . 34
LIST OF TABLES

Page
Electrostatic Charges foran RDX Molecule .............cocoiiiiiiinnet.. 11
RDX Atom-Atom Potential Parameters . . ......oovevieenniein e 15

Lattice Parameters and Energy Obtained in Crystal-Packing Calculations With

(PCK91) and Without (LMIN) Symmetry Constraints .......eoeveeeencernns 16
NPT Monte Carlo AVETAeS . . e o vvvveiinentreeronaseeeosesannooennnnns 24
NPT-MD Averages for T=4.2and 300K ..........coiiiiiriinenranennnns 26
NPT-MD Lattice Dimensions vs. Temperature . ..........ccoeveeeecnennen 32

vii




INTENTIONALLY LEFT BLANK.

viii




1. INTRODUCTION

The pursuit of determining the microscopic details of the chemical and physical processes
that occur in condensed phase energetic materials has led to the development of a potential
energy function to describe the a-form of the hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX)
crystal. Crystalline RDX exists in two phases [1]: the ambient phase (a-solid), for which the
structure has been characterized by neutron diffraction measurements [2], and an unstable phase
(B-solid), the crystal structure of which has not been determined. RDX is one of the most widely
used explosives, and numerous data on the physical and chemical properties exist for this
material [3]. However, direct measurements of molecular-level details of the response of RDX
to external stimuli (such as heating or shock) are not available. Simulations using models such
as that presented here provide invaluable insight into the dynamic responses of the energetic
material. This information can be used to determine how to manipulate or control the behavior
of the material. Toward this end, we present an atomistic model for the intermolecular
interactions in the a-RDX crystal [2]. We will describe the procedure used to develop and
parameterize a simple functional form of the intermolecular potential energy in the first part of
this paper, and then describe a series of tests to which this model was subjected to determine

whether it accurately represents the o-RDX crystal.

Theoretical studies of the past two decades have demonstrated that simple atom-atom pair
potentials are sufficient for predicting molecular crystal structures, but the proper development of
accurate models is challenging [4]. The main difficulty lies in attaining a proper
parameterization of the potential function such that the model reproduces properties of the crystal
such as the lattice energy, crystal structure, elastic properties, and phonon frequencies. Often, the
resulting potentials can be used to predict properties not included in the original fitting of the
function. Also, when large numbers of crystals with similar functional groups are used in the
fitting, the potential parameters are transferable [4-6]. Reproduction of properties used in fitting,
prediction of properties, and transferability of potential parameters are three metrics used to

assess the quality of a model potential.




Numerous studies of organic molecular crystals [4] have demonstrated that in many cases, the
intermolecular interactions can be described by using simple isotropic potentials, such as the

(6-exp) Buckingham potential
V = Aexp(-Br)-C/r® 6))
or the (6-m) Lennard-Jones potentials
V = Dir®-C/r$, _ 2

where m = 8-14.

The repulsion and dispersion parameters A, B, C, and D are assumed to depend only on atom
type and thus are transferable. Despite their analytical simplicity, these potentials have
accurately described a large class of crystals, particularly nonpolar crystals. A number of sets of
such empirical intermolecular potentials for organic crystals containing C, H, N, O, Cl, and S are

currently available [4, 6].

A different approach for describing molecular crystals is to consider explicitly‘the
electrostatic interactions between the atoms of the molecules. In the simplest case, the exp 6-1

potentials
V = Aexp(-Br)-C/r® + Err, 3)

or m-6-1 potentials offer a significant increase in the flexibility and transferability of the
nonbonded potential parameters. This form includes the Coulombic interaction between the
charges associated with the various atoms in a molecular crystal. As an example, Williams and
Starr [7] have shown that the (exp-6-1) potential gives excellent results for calculations of lattice

vibrational for aromatic hydrocarbons, and many of the available force fields such as Amber [8],




ECEPP [9], or Dreiding [10] use this type of potential term for simulations of organic, biological,

and main-group inorganic crystals.

Despite the success of this kind of representation, many crystals contain substantial
anisotropies in the interactions between the molecules in the crystal. Such crystals cannot be
adequately described using the simple electrostatic multipoles. Significant progress has been
made by the use of the distributed-multipole technique, which has been used to successfully
describe hydrogen-bonded structures [11] and - interactions [12]. A recently proposed
algorithm for relaxation of molecular crystal structures using a distributed multipole electrostatic

model provides a promising approach for studying packing of polar crystals [13].

The main objectives of the work presented here were to develop an interaction potential of
the -RDX crystal that both accurately reproduces experimental information and is simple.
These objectives must be accomplished since the aim is to use this model in predicting
phenomena occurring in condensed-phase RDX, which might be difficult to measure
experimentally. If the model is too complex, CPU requirements to calculate bulk properties of
the crystal would be prohibitive. If the potential energy function is too simple and cannot
reproduce measured data, then the model is not representative of RDX and thus is not useful.

We have found that the RDX crystal can be reasonably described using the exp-6-1 potential
(equation [3]). Several of the parameters (such as the Coulombic terms) were assigned before
the fitting of equation (3) to experimental observables was attempted. The Coulombic terms
were determined through fitting of partial charges centered on each atom of the RDX molecule to
a quantum mechanically derived electrostatic potential. We also used previously published
parameters for H-H and C-C interactions, and assumed traditional combination rules to obtain
heteroatom parameters from the homoatom parameters. The remaining parameters were selected
such that symmetry-constrained molecular packing calculations reproduced both the
crystallographic structure and the lattice energy of the crystal. Throughout all calculations
described hereafter, the molecules are assumed to be rigid, and the structure is described by the
center-of-mass positions and orientational parameters for each molecule in the unit cell. The

intermolecular potential was subjected to additional tests: molecular packing calculations




performed without symmetry constraints, symmetry-restricted isothermal-isobaric Monte Carlo
calculations (NPT-MC), and isothermal-isobaric molecular dynamics calculations (NPT-MD).

In section 2, we give details of the analytical form of the intermolecular potential used in the
calculations, the accelerated convergence technique employed for evaluation of the lattice sums,
and parameterization of the potential function. Section 3 is devoted to analysis of the theoretical
methods used for minimization of the lattice energy and the details of the NPT-MC and NPT-
MD calculations. Results of crystal-packing, NPT-MC, and NPT-MD calculations are given in

section 5. The conclusions drawn from the study are given in section 6.
2. INTERMOLECULAR POTENTIAL

The central problem in classical simulations of molecular crystals is the construction of an
analytical potential energy function that accurately represents the intermolecular interactions and
thus predicts the structural and thermochemical parameters of the crystal. In this work, we adopt
some general principles for atom-atom potentials that have proven to be successful in modeling a
large number of organic crystals [4, 14]. In particular, we assume that (1) the intermolecular
interactions depend only on the interatomic distances; (2) the interaction potential can be
separated in contributions identified as van der Waals and electrostatic; and (3) the same type of

van der Waals potential is used for the same type of atoms, independent of their valence state.

We consider the case of a crystal composed of rigid molecules with one molecule in the
asymmetric unit. In this case, the maximum number of degrees of freedom is 12 and corresponds
to the 6 unit cell constants (1, 1, 1, &, B, and ), three rotations (6,, 8,, and 6,), and 3
translations (7, T,, and T;) of the rigid molecule. Let N be the number of molecules per unit cell,
each molecule of index i having n, atoms, such that a given atom is identified by indices ioc. The
position of each unit cell in the bulk is given by n=n,1,4+n,l,+n;l,, where n,, n,, and n, are any

combination of integers and I, (i=1,2,3) are the vectors defining the edges of the unit cell. The

reciprocal space vectors k, are defined using the matrix of basis vectors i‘1=[l1 Ayl




k,_ = (b)) my, (4)
with m,, m,, m; integers.

In the present treatment we approximate the intermolecular lattice energy of the crystal as a

pairwise sum of Buckingham (repulsion and dispersion) and Coulomb potentials of the form

E = Erep—Edisp+ ECoul’ (5)
with
1 © N n; N nj
- * a
Eep = 'z‘g le = j§=:l &, A;oipeXP(~Bigjp Toiejp) (6)
1 *N 2; N L 6 .
EdiSP = _2_§ igi four? j2=:1 |32=:1 Ciajﬁ/rniajﬁ’ @)
and
12 N 0 N L
- *
B = 3L°L L ,21 Z G ip/ Toiaip ®

where L,0=| r,~T;p+n| is the distance between atom o of molecule i and atom 3 of molecule j,
located in the cell determined by the set (n;,n,,n;). The summation Y * in equations (6)—(8)
n

excludes the terms with i=j, when |n|=0.

In performing these lattice sums, special attention should be paid to the dispersion and
Coulombic sums (equations [7] and [8], respectively) due to their slow convergence over the
infinite periodic lattice. For the treatment of these terms, we adopt the method of accelerated
convergence of the crystal-lattice potential sums introduced by Williams [15, 16]. In this

procedure, a general lattice sum S, of the form




N
Y Y Ao/ Toiajp» )

1 © N n; N nj m
S, ==Y*Y Y Y A‘ialjﬁq)m(rniajﬁ)/rniajﬁ
2 'n i=l asl j=1 B=1
12 N ;) N I
+ST'L LY Dighip (1B, (i)l / Ty (10)
n i=1 a=1 j=1 P=1

The function @_(r) rapidly decreases to zero with increasing r and ®@_(0)=1.

As aresult of this transformation, the first term in equation (10) converges much faster than
the original sum S, in equation (9) and can be evaluated in the real space. The second term in
equation (10) is still a slowly varying function of r, but can be determined at a much higher
convergence rate when it is Fourier transformed and evaluated in the reciprocal lattice vector
space. The convergence function @ (r) is chosen to be the normalized incomplete gamma

function

L | gty (11)

a0 = I'(m/2) 222

of index m=1 for the electrostatic case and m=6 for the dispersion sums. The adjustable
parameter 1) in equation (11) has the dimension of inverse length and determines the relative
contributions of the real- and reciprocal-space terms. The contribution of reciprocal-space series
increases as 1 increases. Details of the numerical manipulations can be found in Williams [15,

16], Nijboer and Dewette [17], and Karasawa and Goddard [18].




Under the assumption of neutrality for the total electrostatic charge of each molecule, the
expression of the Coulombic energy determined using the accelerated convergence method can
be written as superposition of a summation evaluated in the real space, Edlir, one evaluated in the
reciprocal space, E;C , plus a set of correction terms, Eclor, that correspond to exclusion of the

self-energy and subtraction of intramolecular interactions:

ECoul = Edlu' + EILC + Eclor' (12)
The analytic expressions of these sums are:

« N B N & .. Q.
By = ly*y v ¥ Siap erfc(a,), (13)

2 n i=1 ea=1 j=1 B=1 rnioz_]B

1 exp(-b;)
Ep = — X |8,k ———, (14)
21V k0 kzi

and

— erf(a)). (15)

In equations (13) and (15), erfc(...) and erf(...) are the complementary error and error functions,
respectively. In equation (14) V=l,(1,xl,) is the volume of the unit cell. The parameters in
equations (13) and (14) are defined as a,=1,r;,; and b;=nk,/n;. The term S,(k;,) denotes the
structure factor defined as

N L
1=l a=




Similarly, application of the accelerated convergence technique to the case of the dispersion

energy yields the following summations [16]:

« N L N I C
Eg = %Z*; Zx Z; [521 —ElEJE (1+ a2 + ag/2)exp(-a), a7
n 1= a= J= = r .
niajf
6 72 2.3 1 1 2
Eo. = —— Y |S4k,)|%k;|y/merfe(by) + (— - —)|exp(-by), (18)
3V k00 2b; b

and

o 6V  \iz1 a-t 12 \is1 as1
N B ; C .
L X [2—(2 +2a. + a;')exp(—a:)] e (19)
2 id1 a1 Bea-l Loip

The first term in equation (17) represents the contribution in the limit k -0 of the Fourier
transform of the second term in equation (10). The second term in equation (19) is the self-
energy, and the last term of equation (19) represents the contribution of intermolecular dispersion
terms. The definitions of parameters a; and by are similar to those previously given for 2, and b,,
but correspond to a different adjustable parameter, 1,. Similarly, the definition of S¢(k_) is that
of equation (16), but with charges q,, replaced by potential terms (C,,)".

For rigid molecules (which are assumed in this study), the terms corresponding to self-
energies and intramolecular energies do not contribute to the derivatives of the lattice energy. In

the case when the molecules in the unit cell are related by symmetry, the general expressions




equations (13)—(15) and equations (17)—(19) representing the energy of a unit cell can be further
reduced. Full details of this particular case are given in Williams [16].

In practice, the interactions in real space are calculated for atom pairs separated by no more
than a given cutoff distance (r,,). Interactions between atom pairs separated by distances larger
than r,, are assumed to be zero. Once I, is specified, the parameters m, and 7 are then chosen
to ensure the proper convergence of the lattice sums in both real and reciprocal space while

limiting the computational expense of the calculations of the sums [18, 19].

An optimal set of potential parameters can be obtained by minimizing a general function of

the form

OE || OE ,
A (55) [gJ +w'(B-E (20)

at the observed equilibrium structure. The function R in equation (20) represents a weighted
superposition of forces and torques plus the square of the difference between the calculated
lattice energy E and the measured value E° [20]. The weight elements w;;are calculated as

[ﬁ‘ Vﬁ]i"jl , where [ﬁ]is the Hessian matrix (H;=9"E/dp,0p;) and V is a diagonal matrix with
elements V;=0%(p,), equal to the allowed error threshold of different structural parameters. The
static lattice energy E° in equation (20) can be estimated from the experimental enthalpy of
sublimation by using the relation [21]: ~AH™ = E+K,+2RT, where E is the lattice energy and
K, is the zero-point energy. We have made the approximation that the static lattice energy is
equal to the measured sublimation enthalpy of the RDX crystal (-130.1 kJ/mole) [22].
Discussions of alternative techniques used for optimization of potential parameters can be found

in Hsu and Williams [20].

Several of the potential parameters, including all of the electrostatic charges, were assigned

before optimization of equation (20) was attempted. The assignment of the electrostatic charges




poses a problem in that the atom-centered monopole charge is not an observable quantity and
cannot be obtained directly from either experiment or first principles calculations. There are
several schemes for evaluation of charges by empirical partition or by using a quantum
mechanically derived wave function [23]. We have chosen to make the assignments for the
atom-centered monopole charges by using the set that best reproduces the quantum mechanically
derived electrostatic potential that is calculated over grid points surrounding the van der Waals
surface of the RDX molecule. This method of fitting to the electrostatic potential was proposed
by Breneman and Wiberg [24], and is incorporated in the Gaussian 94 package of programs [25]
under the keyword CHELPG. This method presents the advantages of having a higher density of
points and a better selection procedure, which ensures a decrease of rotational variables observed
with similar methods. The electronic structure calculations were performed at the MP2/6-31G**
level [26-28]. The atomic arrangement of the molecule used in these calculations was consistent
with the crystallographic configuration [2]. A total number of 11,900 points were used in the fit,
leading to a root-mean-square deviation of 0.00259. The resulting electrostatic charges are given
in Table 1.

The number of parameters to be fit was further reduced by using traditional combination rules

to obtain the heteroatom parameters from homoatom parameters:

Agp = YAgebipp

By = (By, +Byy)/2,
Cup = {CoCop- @1)

We have used the published 6-exp parameters [29] for the H-H and C-C nonbonded
interactions and have optimized the values of N-N and O-O interactions. It has been shown that

there is a strong correlation between the nonbonded potential parameters A and B [28].

Thus, we have used published values [27] for B parameters for the N-N and O-O interactions
and optimized the corresponding A and C parameters.

10




Table 1. Electrostatic Charges for an RDX Molecule

-0.092940

G, -0.015018
G -0.045006
N, 0.038600 JI
f N, -0.331673
ll N, -0.340479
N, 0.557379 ||
N; 0.781316
Ns 0.772447
i 0, -0.356222
|| O, -0.366350
O, -0.369139
(O -0.380884 ”
O; -0.358609
Os -0.378756 II
H, 0.130328
H, 0.174188
H, 0.161566
H, 0.146993
H; 0.113532
Hg 0.158728 __

* The atom indices are consistent with the labels in Figure 2.
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After making these assignments, a two-step calculation was performed iteratively until a
suitable parameter set was obtained. The first step in the iteration involved selection of a trial
parameter set through a combination of trial-and-error adjustments of parameters and
minimization of equation (20). The model using the trial parameter set was then subjected to
symmetry-constrained molecular packing calculations using the PCK91 set of programs [29]
(described in the next section). These two steps were repeated until a parameter set that
reproduced experimental information to the desired tolerance was obtained. The PCK91 set of
programs allows analytical derivatives of the potential only in the direct space. To circumvent
the problem arising from the inability of the PCK91 programs [29] to evaluate the derivatives of
the reciprocal space terms (equations [14] and [18]), we set the cutoff distance in the real space
to 17.0 A. By choosing such a large cutoff, we were able to adjust the parameters 1, and 1, such
that the reciprocal sums are smaller than the desired errors in the evaluation of equation (20).
Thus, evaluation of the reciprocal terms using these parameters became unnecessary. The values
obtained for 1,=0.1861 and n=0.2304 assured contributions of the reciprocal sums smaller than
0.01 kJ/mol. This large cutoff was also used in the subsequent full-minimization-molecular

packing and symmetry-constrained Monte Carlo calculations described as follows.

The quality of the fit was judged according to two discrepancy factors. The first is a
structural shift factor of the form

J=1 i

3 AL 3
F, = (50A8) + (10Ax)? + 2[100-1—’] + Y (Aa)?, 22)
j=1

where AB is the total rms rigid-body rotational displacement (in radians) after minimization, Ax
the rms total rigid-body translational displacement (in A), 1, the lengths of the edges of the unit
cell, and e; the angles of the unit cell. The second discrepancy factor, F,, was calculated from F,
by including the weighted difference between the calculated lattice energy and the observed
lattice energy. The threshold values are those previously proposed by Starr and Williams [31]:

12




unit-cell edge of 1%, cell angles and molecular rotations at 0.02 rad, molecular translations of

0.05 A, and heats of sublimation of 0.02 kJ/mol.

A (3x3x3) block of unit cells of RDX with each unit cell identical to the structure determined
by single-crystal neutron diffraction experiments [2] was used in the parameterization of the
potential energy function. The refined structure of RDX at room temperature, 1 atm, belongs to
the orthorhombic space group Pbca with Z=8 molecules per unit cell (see Figure 1). The cell
parameters are 1,=13.182 A, 1,=11.574 A, and 1;=10.709 A, giving the volume of the unit cell as
1633.8557 A2. As shown in Figure 2, the molecule consists of three alternating N-NO, and CH,

groups arranged in a six-membered C-N puckered ring.

Figure 1. Unit cell of ¢-RDX crystal using refined coordinates given in Choi and Prince [2].

13




Figure 2. Molecular configuration of an RDX molecule.

The values of the complete set of optimized intermolecular parameters are given in Table 2,
and the values of the crystal parameters resulting from the symmetry-constrained energy
minimization using these parameters are given in Table 3. A total translation of 0.126 A and a
total rotation of 1.241° away from the experimental values for the molecule in the asymmetric
unit take place in the minimization process. The corresponding values of the discrepancy factors

are F,=0.88 and F,=0.57.
3. DETAILS OF THE CALCULATIONS

Three series of calculations—molecular packing, symmetry-constrained isothermal-isobaric

Monte Carlo, and isothermal-isobaric molecular dynamics calculations—were performed to

14




Table 2. RDX Atom-Atom Potential Parameters

Pair il Cap B, Ap
(a—P) (kJ/mol A% (A (kJ/mol)
H-H 136.3800 3.74 9213.510
c-C 2439.3459 3.60 369726.330
N-N 1668.3316 3.78 264795.246
| 0-0 1453.3114 3.96 290437.820

assess the quality of the potential energy function. Details of the methods for each of the
calculations are described herein. In each of the calculations, the set of refined coordinates from

the neutron-diffraction study [2] was used for the initial geometry of the system.

3.1 Molecular Packing. Molecular packing calculations are minimizations of the lattice
energy with respect to structural degrees of freedom of the crystal. For the particular case of
crystals with one molecule in the asymmetric unit occupying an arbitrary position, the maximum
number of structural degrees of freedom is 12. A reduced number of structural degrees of

freedom might be involved, depending en the symmetry restrictions of different space groups.

Assuming that the crystal energy is known as a function of the structural lattice parameters,
the equilibrium crystal configuration is determined by the conditions of zero force and torques,
together with the requirement that there is a minimum. The search for such a minimum can be

done using a combination of steepest-descent and Newton-Raphson procedures [15, 32].

The Newton-Raphson method is used to minimize the lattice energy for configurations close
to the equilibrium, when all eigenvalues of the Hessian matrix are positive definite. In this case,
the step for the iterative search for a minimum energy from a trial configuration is determined as

Ap = -[H(PI' G (p), (23)

15
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where G is the vector of first derivatives and ﬁ is the matrix of second derivatives of the lattice

energy with respect to the structural variables. This procedure is repeated until no significant

changes are observed in the coordinates, and the first derivatives of the energy are close to zero.

In those situations when the Hessian is not positive definite for the trial configuration, the
steepest-descent method is used. In this procedure, the searching step is taken along the direction
of the local downhill gradient [32]. This method has a low rate of convergence near the
minimum, but can be efficiently used to determine a configuration for which the Newton-

Raphson method can be used.

The molecular packing program PCK91 [29] was used in the determination of a suitable
parameter set. This program was used to find energy minima for systems described by the trial
parameter sets. This program calculates crystal lattice sums using the accelerated convergence
method in section 2, and the first and second derivatives of the crystal lattice energy are
evaluated analytically. The space group symmetry is maintained throughout the energy
minimization. This reduces the number of independent variables in the minimization procedure,
resulting in a significant decrease of computational time when compared to a nonconstrained
energy minimization. The crystallographic parameters varied in the minimization using PCK91
[29] are the three dimensions of the unit cell and the three respective translations and rotations of
a central molecule (from which the positions of all other molecules in the unit cell can be

determined through symmetry operations). The angles of the unit cell were frozen at 90°.

A necessary condition in assessing the accuracy of the empirical potential energy is that the
structure corresponding to the energy minimum of the model should maintain the observed space
group symmetry [34]. In order to test our potential for such a requirement, we have used an
algorithm recently proposed by Gibson and Scherega [35] for efficient minimization of the
energy of a fully variable lattice composed by rigid molecules. This algorithm makes use of
Gay’s [36] secant-type unconstrained minimization solver (SUMSL) routine to minimize the
lattice energy. The gradients of the energy with respect to generalized coordinates (i.e., 6Z rigid-

body parameters of the Z molecules in the unit cell and the six lattice parameters) are evaluated
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analytically. The nonbonded interactions were cut off at a distance Qo with a cubic feather
(spline) applied over the distance Po-Qa to ensure that the energy and its first derivatives are
continuous everywhere. Here, the P and Q parameters specify, respectively, the start and the end
of the feather, and o is the value of interatomic potential at which E = 0 and dE/dr < 0. Long-

range Coulombic interactions are evaluated based on an Ewald type of transformation.

At the beginning and at the end of lattice energy minimization, the symmetry operations that
transform the molecules in the unit cell are computed, and if these operations remain unchanged,
the space group is considered conserved; otherwise, a new space group is deduced based on the
final symmetry relations. Some of the symmetry transformations can be lost during energy

minimization but are regained before convergence takes place [34].

We have used the algorithm as implemented in the program LMIN [37] to analyze the
accuracy of the proposed intermolecular potential for the RDX crystal. In all of these

calculations, the parameter P was set equal to ~Q-5.

3.2 Symmetry-Constrained NPT Monte Carlo Calculations. The intermolecular potential

was further evaluated based on its performance in Monte Carlo calculations in the NPT ensemble
[19]. These calculations were used to determine some of the crystal parameters as functions of
temperature and pressure as predicted by the model. In these calculations, we have constrained
the crystal symmetry as in the first series of molecular packing calculations using PCK91 [29].
The simulation box contains all unit cells from -3,3 along the I, axis, ~3,4 along the 1, axis, and
-3,4 along the I, axis, with the central cell occupying position (0,0,0). The positions of the
molecules inside the unit cell, considered as rigid entities, are determined from the coordinates of
a single molecule in the unit cell, which is denoted hereafter as (T). The coordinates of all
remaining molecules in the crystal of RDX are obtained from the fractional positions of (T) by
applying the operators of the crystal space group Pbca [38]. The position of (T) inside the unit
cell is described by a set of fractional coordinates of the mass center, and the molecular
orientation is described by a set of quaternions [19, 39]. Because of the symmetry constraints

within the simulation, each molecule in this system has the same number and spatial arrangement
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of neighbors as (T) at each step in the NPT-MC simulation. Using these symmetry constraints,

the total potential energy of a system,

n

; j

N
Y Y B @9

a=1 j=1 B=1

=

218
*

1z

[
il
—

can be written in terms of the potential energy of a single molecule (T),
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Therefore, in this type of simulation, it is necessary to calculate only the potential energy for the
single molecule (T) (equation [25]) rather than perform the summations over all molecules as
given in equation (24). The computational demands of symmetry-constrained NPT-MC
simulations are much less than nonconstrained NPT-MC simulations, since the phase space that
is sampled is reduced to the structural parameters corresponding to a single molecule. We found
in this and a previous study [40] that the simulations provide averages that do not differ radically
from non-symmetry-constrained NPT-MC predictions. This allows for rapid testing of
intermolecular interaction potentials using the method of Monte Carlo. Poor potentials can be
eliminated quickly with these inexpensive calculations, while potentials that show reasonably
good results in these simulations can be subjected to more rigorous nonconstrained simulations

such as those described later.

The general method followed in performing the MC-NPT calculations is that described in
Allen and Tildesley [19]. Here we will discuss only the main steps of this procedure. The
sampling in the MC walk was performed over the three cell constants corresponding to unit cell
edges, the fractional coordinates of the mass-center, and the set of quaternions of (T). The angles

of the unit cell were frozen at 90°. At every step during the Markov walk, a trial to randomly
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modify both the position and orientation of (T) and one edge of the unit cell was attempted.

These types of displacements were performed according to the relations:

»
|

2 = s QESDAs,,, =Xy

qinew qiold + (2&2_ l) Aqmax’ i: 1 ,2,3 ,4

new
li

LM+ QE-DAL, i=123, (26)

where &,, &,, and £, are random numbers uniformly distributed in the interval (0,1), and As_,,,
Aq,,., and Al_,, are the maximum allowed changes of the fractional coordinates of the mass
center, quaternions, and unit cell dimensions, respectively. The maximum displacements are
continuously adjusted using the procedure described in Allen and Tildesley [19] to maintain an

acceptance/rejection ratio of about 50%.

After each trial move, the new coordinates of the molecules in the crystal, the new volume V,
and the new interaction energy E, .., (equation [25]) were calculated. The acceptance or rejection

of each trial move was decided according to the probability min(1,exp[-BW]), where
W = _B[(Encw - Eold) + P(Vnew _Vold)] +N ln(Vnev/ Vold) ’ (27)

and B=1/(kT). The move was accepted if W < 0. If W > 0, a new random number { distributed
in the interval (0,1) was generated and compared to exp(—-BW). The move was accepted if

¢ < exp(-BW) and rejected otherwise. Averages of different quantities such as the lattice energy,
lattice dimensions, density, and the positions of the (T) are then determined. The fluctuations of

a property A, defined as

F=-yA2- @A? (28)
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will be reported with the averages for these simulations, as well as for the NPT-MD simulations
described in succeeding text. In all the MC simulations, warm-up walks of 1,000-3,000 MC
steps were done. The Markov walk was performed for a total number of steps varying from

100,000 at T=4.2 K to 250,000 at 300 K.

A problem of interest in NPT simulations is the evaluation of the average pressure. For a
system of rigid polyatomic molecules, Smith [41, 42] has shown that the pressure can be
calculated using the molecular virial theorem if the Hamiltonian of the system is rewritten in
terms of the scaled coordinates of the molecular center of mass (s,=r/V'?) and of the
intramolecular distances relative to the center of mass (d;,=r;,~I;), invariant at volume scaling.

A more general approach has been introduced by Parrinello and Rahman [43], who have used the
full microscopic stress tensor for an N-particle system in a periodically repeating MD cell. Nose'
and Klein [44] have extended the calculation of the stress tensor to include the long-range
Coulombic interactions and have applied this to rigid polyatomic molecules. We present in the
Appendix a generalization of the treatment based on the accelerated convergence technique given
by Karasawa and Goddard [18], to formulate the stress tensor for both the Coulombic and
dispersion potentials assuming a system of rigid molecules in a periodic lattice. The calculated
pressure, as given in equation (A9), has been used to provide an independent verification of the

reliability of the codes developed in this study.

3.3 NPT Molecular Dynamics Calculations. The intermolecular interaction potential for
RDX was subjected to a final and more rigorous test: NPT molecular dynamics simulations, in
which there are no constraints other than the assumption of rigid-body molecules. Single
trajectories at 4.2, 100, 200, 250, 273.15, 300, and 325 K and zero pressure were integrated for at
least 10 ps. The calculations were performed using the MDSCPC4 set of programs [45]. In this
procedure, the equations of motion for both the molecules and the simulation cell are integrated
using a fifth-order Gear predictor-corrector [46]. The rotational motion is handled using the
Evans quaternion algorithm [47] with a fifth-order Gear integrator. The algorithms used are
described in detail in Nose’ and Klein [44]. A fixed time step of 2.0x10™" s was used. The
system consists of a box containing 27 unit cells [a 3x3x3 box of unit cells]. At the beginning of
each simulation, the unit cells are identical to the experimental structure at T=300 K, 1 atm [2].
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The initial velocities of the centers-of-mass of the molecules were selected at random, but subject
to the following conditions: the translational and rotational velocities were selected such that the
simulation cell had no bulk motion. Also the translational and rotational velocities were scaled
to yield the desired temperature. The system was first integrated for 2,000 steps (4 ps) under
conditions of constant volume in order to relax the system away from the initial state. During
this period, the velocities were scaled at every five steps in order that the internal temperature of
crystal mimic the imposed temperature. And additional 3,000 steps (6 ps) were then integrated
(at constant volume) without additional scaling of the velocities. Finally, the isothermal-isobaric
trajectory was integrated for at least 5,000 steps (10 ps) for each temperature at zero pressure.
During the first 2,000 steps (4 ps) of each NPT trajectory, the velocities were scaled at every 5
steps as described previously. Averages were obtained from properties calculated at subsequent

integration steps in the NPT simulation.

Summations given in equations (13)—(19) were adapted for inclusion of minimum-image
periodic boundary conditions in all dimensions in these simulations [19]. The interactions are
determined between the sites (atoms) in the simulation box and the nearest-image sites within the
cutoff distance. In these calculations, the sum over reciprocal vectors was included for the
Coulombic interactions, subject to the summation limit given by (m,? + m,*+ m,%) < 122 (see
equation [4]). Long-range corrections for the potential energy and virial contribution due to
dispersion were calculated using the standard techniques [19]. The cutoff distance here is 80%
of one-half the shortest perpendicular distance between two faces of the simulation cell,
assuming unit cell sizes measured at 300 K, 1 atm [2]. This corresponds to a cutoff distance of
12.8508 A. We monitored the simulation box size to be certain that the shortest perpendicular
distance between two opposite faces of the box never became less than twice the cutoff distance

to avoid violating the minimum image condition during the simulation [19].

4. RESULTS AND DISCUSSIONS

4.1 Molecular Packing Calculations. The results of the molecular packing calculations are

given in Table 3. In the full minimization of the RDX crystal energy, the space symmetry is

maintained with less than 0.003° deviations of the lattice angles from experiment. Also, the
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maximum deviation of the fractional coordinates of the centroids [35] is 0.006. The deviation of

the Euler angles from experiment is no greater than 1.183°.

Since accelerated convergence is not used for evaluation of the 1/1® attractive terms in the
nonbonded potential in the full minimization of the RDX crystal energy, dependence of the
lattice energy on the cutoff distance is expected. This is shown (see Table 3) by results obtained
for different Q parameters. For values of Q larger than 10, a small influence on the total energy
per molecule and almost no effect on geometrical parameters of the lattice are found. In addition,
these results are in very good agreement with those obtained by using the symmetry constraints

procedure and accelerated convergence technique.

4.2 Symmetry-Constrained NPT Monte Carlo Calculations. Ideally, the structure predicted
in a crystal-packing calculation should reproduce the crystal structure at temperatures close to 0
K. Although experimental data in this temperature region or extrapolated values from
experiments performed at much higher temperatures are not available, we have performed NPT-
MC calculations at 4.2 K to provide this comparison. Additionally, we investigated the influence
of thermal effects on the crystallographic structure by performing MC calculations in the NPT
ensemble at temperatures of T=100, 200, and 300 K and pressures of 1 atm and 500 atm. The
averages and fluctuations corresponding to lattice constants, lattice potential energy, density, and

the positions and orientation of the molecule in the asymmetric unit are given in Table 4.

As evident in Table 4, the effect caused by the increase in temperature from 4.2 K to 300 K
at 1 atm is the expansion of the lattice dimensions. The most significant increase of 0.53 A takes
place in a direction parallel to the 1, axis over this temperature range. Correspondingly, the
overall density of the crystal decreases from 1.796 g/em® at 4.2 K to 1.689 g/em® at T=300 K. A
similar trend is observed for calculations at P=500 atm. The unit cell dimensions are within 4%
of the experimental values at T=300 K and 1 atm, with the largest deviation being the 1,

parameter, which is 0.43 A larger than the experimental value.
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No significant deviations of the position and orientation of molecule (T) from the experimental
values were observed for this range of temperatures and pressures. We found that the maximum
deviations of the average values of the fractional coordinates and Euler angles from the experimental

data are smaller than 0.006 and 2°, respectively.

4.3 NPT Molecular Dynamics Calculations. Averages and fluctuations of crystal structure

information calculated from the trajectories integrated at T=4.2 and 300 K are given in Table 5.
These averages include lattice dimensions, mass-center fractionals, and Euler angles of the eight
molecules of the unit cell. The averages for each of the eight molecules in the unit cell are over the
27 unit cells within the simulation box. The results at 4.2 K are in close agreement with the

molecular packing and symmetry-constrained NPT-MC results.

The time histories of the lattice parameters (1,, 1,, 15, &, B, and ) and the volume, pressure, and
rotational and translational temperatures for the T=300 K trajectory are given in Figures 3 and 4.
The trajectory is well behaved; each property oscillates about the average value given in Table 5 for
the duration of the trajectory. The lattice dimensions deviate no more than 2% from the
experimental values. The 1, prediction is in much better agreement with experiment (within 0.02 A
than the predictions of the NPT-MC calculations. Figure 5 provides a comparison with experiment
[2] of the averages of orientational parameters of the eight moleculés in the unit cell. It is evident
that rotational disorder is small and the center-of-mass positions of the molecules are very close to

those determined experimentally [2].

Trajectories at T=100, 200, 250, 273.15, 293, and 325 K were also integrated for 10 ps to provide
information on the behavior of the system with increasing temperature. Averages of the lattice
dimensions resulting from these simulations are given in Table 6. This information can be used to

extract the thermal expansion coefficients by using the relations:
o= i a_)g , 29)
X\dT),;
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Figure 3. Time histories of lattice parameters (1,, 1, 1,, &, B. ) for isothermal-isobaric
trajectory corresponding to T=300 K, 0 atm.
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Table 6. NPT-MD Lattice Dimensions vs. Temperature

Lattice Dimensions
l} 13 L Volume
T(K) (&) A) A) (A%

Calculated | Calculated | Calculated Calculated

[ 42 | 1329% 11654 | 10610 1643.294
100 13.321 11.699 10.646 1659.098

200 13.360 11.748 10.683 1676.732

250 13.385 11.771 10.710 1687.412
273.15 13.389 11.788 10.726 1692.880
293 13.394 11.796 10.731 1695.451

300 13.396 11.798 10.732 1696.150

i 325 13.416 11.815 10.750 1703.983

Coefficients of Fit of Lattice Parameters to Quadratic in Temperature

6.307055 x 10 | -1.512549x 107 | 8.828888 x 107 9.259430 x 10*
-3.229344x 10° | 6.484753x 10* | -1.068887 x 10° | -3.228835x 107

ll 13.79879 11.61935 10.65897 1710.723 !I

@w | >

0

* A, B, and C in units of A/T?, A/T, and A, respectively for 1, i=1, 2, and 3.
A, B, and C in units of A¥T?, AT, and A%, respectively for the volume.

where a is the coefficient of linear expansion of the material and X denotes the length of one of

the sides of the unit cell. The coefficient of volume expansion, B, has a similar form:

1oV
-3(3),




A single value of the linear expansion coefficient at T=293 K (63.6 x 1075 K*) has been reported
[49], which implies that thermal expansion is the same in each of the three dimensions. Two
volume expansion coefficients, 191 x 10" K! at 293 K and 250 x 107° K™ for the temperature
range 293-373 K, are also given. Figure 6 shows the unit-cell lattice parameters and volume as
functions of temperature. The squares denote the time-averaged values obtained from the
trajectories (listed in Table 6), and the lines denote fits of these averages to quadratic functions of
temperature over the range 250 to 325 K. The coefficients of each fit are given in Table 6. The
fits can be used to evaluate equations (29) and (30) to provide the linear and volume expansion
coefficients for this model. The linear expansion coefficients for lattice dimensions 1, 1,, and I;
are 34.8 x 1075, 47.5 x 10°¢, and 47.2 x 10~ K!, which are 45, 25, and 26% smaller than the
experimental values, respectively. The results of the simulations differ from the experimental
values in that the value of the linear expansion coefficient for cell parameter 1, is smaller than
those for cell parameters 1, and 1,, which are approximately the same. The calculated value of

the volume expansion coefficient (129.6 x 106 K1) at 293 K is 32% smaller than the measured
value [49].

5. SUMMARY AND CONCLUSIONS

In this paper, we have developed an intermolecular potential for the RDX crystal based on
6-exp Buckingham potentials terms plus Coulombic interactions. Electrostatic charges of
different atoms in the RDX molecule were determined from fits to ab initio electrostatic
potentials calculated at the MP2/6-31G** level. Values for heteroatom potential parameters
were obtained from those for homoatom parameters by using traditional combination rules.
Values for several of the homoatom parameters were taken from published data [10, 30],
including the H-H and C-C potential terms. The published value of the B parameter of the 6-exp
Buckingham potential for the N-N and O-O Buckingham terms was used, and the values of the
remaining A and C parameters for these homonuclear interactions were optimized by nonlinear
least-squares fitting of the potential to a general function that represents a weighted superposition

of forces and torques plus the square of the differences between the predicted and experimental
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Figure 6. Lattice parameters (1,, 1,, 15.) and unit cell volume as a function of temperature.
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lattice energies for the experimentally determined crystal structure. The potential parameters
were adjusted to reproduce the experimentally determined space group symmetry, the lattice

dimensions for the RDX crystal, and the enthalpy of sublimation.

Accurate values of the crystal lattice energy have been obtained in symmetry-constrained
molecular packing and NPT-MC calculations by employing the technique of accelerated
convergence for the dispersion and Coulombic lattice sums. Molecular packing calculations with
and without symmetry constraints indicate very good agreement with experimental geometrical

and thermochemical data.

The temperature dependencies of the physical parameters of the lattice have been investigated
by performing symmetry-constrained NPT-MC calculations in the range 4.2-300 K and at
pressures of 1 and 500 atm. The average values of the physical lattice parameters calculated
from Markov walks with 100,000-250,000 steps indicate that the major modification of the
lattice takes place along the 1, axis with increasing temperature. Molecular reorientation and
translation of the mass-center fractionals are no greater than 2° and 0.006 from the experimental
values, respectively, over the temperature and pressure ranges considered. Lattice parameters

calculated at T=300 K and 1 atm are within 4% of experimental values.

A final test of the interaction potential was performed using isothermal-isobaric molecular
dynamics simulations at 0 pressure over the temperature range 4,2-325 K. The results of these
calculations indicate that this model reproduces to within 2% the measured cell dimensions of
the RDX crystal at 300 K. Additionally, little rotational or translational disorder occurred in the

thermal, unconstrained trajectories.

Linear and volume expansion coefficients at 293 K were calculated using time averages over
the temperature range 250-325 K. The calculations differ from experiment in that one of the
dimensions of the unit cells does not have the same linear expansion coefficient as the other two
dimensions, as implied by the single reported value [49] of the linear expansion coefficient. The

linear expansion coefficients for the three dimensions are 45, 25, and 26% smaller than the
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experimental value. The volume expansion coefficient is 32% smaller than the measured value

[49].

These results demonstrate that the proposed potential provides an accurate description of the
o-form of the RDX crystal. The structure resulting from NPT-MD simulations at 300 K and 0
pressure is in excellent agreement with measured structural information. The lack of rotational
and translational disorder of the molecules seen in all of the simulations indicates that the
interaction potential has the correct anisotropies of the intermolecular interactions. The good
agreement of the thermal expansion coefficients with experiment at 293 K suggests that the
model behaves properly over a large temperature range, even though thermal information was not

used in the determination of the potential energy parameters.

This model appears to be useful for prediction of nonreactive processes occurring in an
«-RDX crystal. Refinement of this model can be made by including the effects of intramolecular
motions, particularly of low-frequency torsional motions of the nitro groups and the ring. In
addition, the model can be extended to reproduce not only geometrical and energetic parameters,
but also spectroscopic data for the RDX lattice. Extensions of the model to include the
intramolecular degrees of freedom are expected to facilitate full atomistic investigations of the
dynamics of this energetic material. Additionally, preliminary results indicate that the
parameters determined for this potential energy function are transferable to other important cyclic

nitramines.
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APPENDIX:

FORMULATION OF THE STRESS TENSOR
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It has been previously shown that for a system of rigid molecules in a periodic system under

external pressure that the internal stress tensor II can be defined as’

1| ot B, -0®
ey V g i(hsi)g (hSi)Y +§,a'l—h.m ’ (Al)

e

where @ is the potential energy between the molecules in the central cell and the molecules in the

rest of the crystal. Here we have assumed the Cartesian coordinates of the atom o belonging to

molecule of index i are represented as functions of the molecular mass center, hs,, and the

intramolecular distance, d;,:

r, = bs, = bs, +d,, (A2)

where s,, and s, are the fractional vectors of the atom (1,0) and of the molecule i, respectively, and

h = [1,,1,,1,] is the matrix of basis vectors.

In this appendix we give the expressions of the Coulombic and dispersion stress tensor.
These results are obtained following the method originally introduced by Nose’ and Klein' for the
case of Coulombic interactions. The corresponding contribution of the repulsive energy

(equation [6] in the report) to the stress tensor is calculated only in the real space as

B

n;

N
giﬁgl Asajp Biogp eXP(~Bojp Taiosp) X niajp)e (Cnigly (A3)

1 1
Vﬂmpsy = E *

iz

]
-

w18

a=1

1

—

1 Nose/, S., and M. L. Klein. Molecular Physics. Vol. 50, p. 1055, 1983.
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Using the identities 8V/dh,, = Vh,, and dh,, /dh, = h 'h., the Coulombic stress tensor is

found to be of the form II' = I}, +II' , where

© N B N I - .
VI, = 1555 T T T quap e Ty ooy o e o3, (a4)
2'n isla=lj=1p=1 r:iaj[i T,
and
exp(-b;) (1+7%K /)
VIL..y = m,kz 15,(k )| (8- ——-——‘(k e (65,
0 kg ko,
o N B -
- LY ¥ q2mikk,), @), [S, G )exp(-2nik 1)
n i=1 a=1
- S,(-k,) exp (2mik r,.)] |- (AS5)

For flexible molecules, an additional term representing the contribution of the potential term Ecor

should be included (see, for example, Essman et al.2).

Similarly, the stress terms determined by the dispersion potential are calculated as:

2 Essmann, U., L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen. Journal of Chemical Physics.
Vol. 103, p. 8577.
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1 oo N nl n. exp( a6)
Vi = 153 13 H g 2% 60+ 30l s aagh e (80
n i=1a=1j= = rmaJB

1 1 2
o b_) exp(-bg )} BSY

s 6

p _ 92 23
Vr[:ecey - 3V Z |S6(km)| km
k, *0

- 3k [ Vrerte(vy —exp<—b:>/b]<km>s<km>,,}

; )l 2mick ), (d,),

6 6

N 5
- Tt__ *Z Z 1a1a)1/2km

x (Sl(km)exp(—Z‘n:lk r.)-S, (-k,)exp (21c1kmria)).

m ie
k,#0

(A7)

and

2
(Ciaia) 1/2} 63‘{ * (A8)

In this case, there is a nonzero contribution of the potential term Efor to the stress tensor, due to
the volume dependence of the first term in equation (19). In the previously listed expressions,
indices o and P denote different molecules of the ensemble, while indices € and vy represent the

X, ¥, and z components of the tensor, and 8 is the Dirac delta function.

Under hydrostatic conditions, at equilibrium, the pressure in the system can be calculated as

1/3 of the average of the trace of the total stress tensor:
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1z

1 Ii tot tot tot.
P:___ — II H s A9
3V<'1mi+(xx+ ' )> (49)

1

where the total contributions from repulsive, dispersion, and Coulombic potential terms are

tot

included in the stress tensorial terms II, .

Using the identity awahm = th'sl with the general definition (A1), it follows that at

equilibrium and under hydrostatic conditions, an alternative formulation of the pressure is

N p2
p--L <2 B gyolv Y (A10)
m .

This expression has been previously used by Smith* * for calculating the pressure in a molecular

system that can expand or contract isotropically.

3 Smith, W. Information Quarterly for Computer Simulation of Condensed Phases: The CCP5 Newsletter. Vol. 26,
p. 43, 1987.

4 Smith, W. Information Quarterly for Computer Simulation of Condensed Phases: The CCP5 Newsletter. Vol. 39,
p. 14, 1993. .
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